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1. Introduction

The summation of single logarithmic effects in QCD observables arising as a consequence
of ‘wide angle’ soft gluon emission has a long history [[l]-[22], with the discovery of non-
global logarithms providing a recent highlight [§, f]. In this paper, we wish to report
the possible emergence of a new class of ‘super-leading’ logarithms which could arise in
general non-global observables. We refer to the logarithms as super-leading since they are
formally more important than the ‘leading logarithmic’ summations that have hitherto
been performed. The fact that these new contributions first arise at quite a high order in
the perturbative expansion in processes involving at least four external coloured particles
and are subleading in the number of colours N may account for their lying undiscovered
until now. Their origin is related to the non-Abelian Coulomb phase terms which are
present in the colour evolution.

At the present stage in our understanding, we are not able to claim strictly to have
proven the existence of super-leading logarithms and the corresponding breakdown of QCD
coherence that such logarithms would imply. As we shall see, the superleading logarithms
emerge under the assumption that successive emissions can be ordered in transverse mo-
mentum and we have not proven this!. We do however wish to stress that the failure of

kr ordering would itself be of significant interest.

!"'We expect similar logarithms to emerge using other ordering variables although it is possible that the
coefficient of the superleading logarithm may differ.



The paper is organized as follows. Throughout we shall focus upon one particular non-
global observable, namely the ‘gaps between jets’ cross-section, although our conclusions
are clearly more general. This is the cross-section for producing a pair of high transverse
momentum jets (@) with a restriction on the transverse momentum of any additional jets
radiated in between the two leading jets, i.e. kr < Qg for emissions in the gap region.
This process has been much studied in the literature [[[(]-[[4] and has been measured
experimentally BJ-B7]. In the following section we explain how to sum the logarithms
which arise as a result of soft gluon corrections to the hard scattering. We explain how
the non-global nature of the observable affects the summation and in particular how it
necessitates the summation over real and virtual soft gluon emissions outside of the region
between the jets. We organize our calculation in terms of the number of gluons which lie
outside of the gap region and compute the contribution to the cross-section which arises
from one emission (real or virtual) outside of the gap. In section [}, we uncover the super-
leading logarithmic structure. We show that it is intimately connected with the imaginary
(¢m) terms which are present in the soft gluon evolution due to the exchange of Coulomb
gluons, and that it is subleading in N. We show also that the super-leading logarithms
can be seen to arise as a result of the breakdown of the ‘plus prescription’ in the evolution
of radiation which is collinear with either of the incoming parton legs above the scale Qg
because, although the real and virtual parts (at z < 1 and z = 1 respectively) are equal and
opposite, their subsequent evolution down to the scale Qg is not. In section f| we present
some numerical results.

2. Some history

In the original calculations of the gaps between jets cross-section [E, @], all those terms
~ o21In"(Q/Qop) that can be obtained by dressing the primary 2 — 2 scattering in all
possible ways with soft virtual gluons were summed. The restriction to soft gluons implies
the use of the eikonal approximation and greatly simplifies the calculations. For the validity
of the eikonal approximation, it is assumed that all collinear radiation can be summed
inclusively and hence that any collinear logarithms in /@y can be absorbed into the
incoming parton density functions. We shall later question this assumption but for now
we assume its validity.

We shall focus our attention upon quark-quark scattering: the colour structure is sim-
pler and all of the key ideas are present. In this case, the re-summed scattering amplitude
can be written?

Q
2cs [dk
M(Qu) = exp | - 2% [ T | M(@) (2.1)
T kr
Qo
where [E, m ] ]
N i —Lir+ My + dv, A (22)
N 2 IN p(Y,Ay)

?We neglect the running of the strong coupling throughout this paper although it is straightforward to
re-instate it.



is the matrix which tells us how to attach a soft gluon to a primary four-quark hard
scattering. T is defined in the ¢-channel (singlet-octet) basis where

o =M'SyM (2.3)

is the scattering cross-section and

MO N2 0
M= <M(8)> and Sy = < 0 N24_1 ) . (2.4)

In eq. (.9), Y is the size of the rapidity region over which emission with kr > Qg is vetoed

and Ay is the distance between the two jet centres (in the most commonly used event
definition, Ay =Y 4+ 2R where R is the radius of the jet cone) and

sinh(Ay/2 +Y/2)

PY: Ay) =log S R 2=V /2)

~Y. (2.5)

In this basis we have

4 0
M(Q) = My = /19— ( —abm> . (2.6)
Equation (R.2) quantifies the effect of adding a soft and virtual gluon in all possible ways to
a four-quark matrix element. Within the eikonal approximation one obtains contributions
from two distinct regions of the loop integral: the first, sometimes denoted the ‘eikonal
gluon’ contribution [[J], comes from the pole at k2 = 0. The residue of this pole is
identical, but with opposite sign, to the phase space integral for the emission of a real
soft gluon. In particular, it makes sense to ascribe definite values of rapidity, azimuth
and transverse momentum to the eikonal virtual gluon. Of these, eq. (P.9) includes only
those whose rapidity lies within the gap region (i.e. within the region between the two
hard jets), the contributions from outside the gap region cancelling with corresponding
real emission contributions. The second region of the loop integral, sometimes denoted the
‘Coulomb gluon’ contribution [[9, B§, BJ], comes from a pole at which one of the emitting
partons is on-shell, which pinches the contour integrals at the point at which the gluon’s
positive and negative light-cone momenta are zero, corresponding to a space-like gluon
with only transverse momentum. Its residue is purely imaginary and only non-zero if both
the emitting partons are in the final state or both in the initial state, giving the <7 terms
in the evolution matrix. Strictly speaking, for the Coulomb gluons, the region of k7 below
Qo must be included, however this region only contributes a pure phase which cancels in
observables, as shown explicitly in [I].

At first sight, one may suppose that the evolution just described correctly captures all
of the leading logarithms. This would indeed be so if it were the case that the contributions
arising from real gluon emission always cancel with a corresponding virtual emission. In
this case, the only region in phase-space where the real-virtual cancellation would not occur
would be the region where real emissions are forbidden, i.e. within the gap region and with
transverse momentum above (g. This may seem a straightforward consequence of the
Bloch-Nordsieck Theorem however it is not.



Figure 1: Illustrating the cancellation (and miscancellation) of soft gluon corrections.

Although it is true that the real and virtual contributions cancel exactly at the cross-
section level in the case where we dress a hard scattering amplitude with a single soft
gluon, it is not true that the cancellation survives subsequent dressing with additional
soft gluons. This is illustrated in figure [ The upper two panes contain typical diagrams
where a soft gluon dresses a 2 — 2 hard scattering. At the cross-section level such single
soft gluon corrections exactly cancel each other since all cuts through a particular uncut
diagram sum to zero. Now consider the lower two panes. To capture the leading logarithms
we assume that it is appropriate to order strongly the transverse momenta of successive
gluon emissions as one moves away from the hard scatter. If we first consider a real gluon
emission above )y then it must lie outside of the gap region. We should then consider
virtual corrections to this five parton amplitude. Bloch-Nordsieck guarantees only that
it is true that those virtual corrections which lie outside the gap region in rapidity, or
have transverse momentum below g, will be exactly cancelled by the corresponding real
emission graphs. Virtual corrections to the five-parton amplitude which lie above Qg
and are within the gap region have nothing to cancel against, for their corresponding
real emissions are forbidden by the definition of the observable. These virtual corrections
embody the fact that any emission outside of the gap region is forbidden from radiating
back into the gap with k7 > Q. Thus we see that the non-global nature of the observable
has prevented the soft gluon cancellation which is necessary in order that eq. (R.1]) should
be the whole story.

It is therefore necessary to include the emission of any number of soft gluons outside
the gap region (real and virtual) dressed with any number of virtual gluons within the
gap region; all gluons having transverse momentum above (Jy. Clearly it is a formidable
challenge to sum all of the leading logarithms, mainly because of the complicated colour
structure of an amplitude with a large number of final state gluons. Progress has been



made, working within the large N approximation [I3, [4]. In fact a great deal of interest
has been generated [BA—[BJ] by the fact that, in this large N limit, the evolution equation
for the out-of-gap gluons [[[] maps onto the Kovchegov equation for non-linear corrections
to the BFKL equation [BJ-[Bj]. Here, however, we prefer to keep the exact colour structure
but instead we only compute the cross-section for one gluon outside of the gap region. This
can be viewed as the first term in an expansion in the number of out-of-gap gluons.

2.1 One emission outside of the gap

Thus motivated, we now compute the cross-section for emitting one soft gluon outside of
the gap region dressed with any number of virtual gluons. There are two new ingredients
compared to the four-parton case:

1. We need to consider the emission of a real gluon off any one of the four external
quarks. The corresponding five parton amplitude needs four colour basis states and
hence the action of emitting a real gluon from the four-quark amplitude will be
described using a 4x2 matrix, D, where €* denotes the gluon polarisation vector.

2. We need also to determine the 4x4 matrix A which acts on the five particle amplitude
in order to account for the dressing with a virtual soft gluon.

The real emission contribution is obtained from the four-quark amplitude M via3
M (k) = D*M(kr) (2.7)

with . .
5(—hY — By + bl + hf) 5

(=h = bl + hiy + hi)

2

B R ) S )
0 S(=hf + b — B + hY)
and the eikonal factors are
p= Ly P (2.9)
! 2 Di - k’

where k is the gluon’s four-momentum and p; are the external quark momenta. In partic-
ular, we choose

N

pP1 = 7(170,0’1)5
/5

b2 = 2 (170,05 _1) s
b3 = Q (COSh(Ay/2)7 0,1, &1Hh(Ay/2)) )
ps = @ (cosh(Ay/2);0,—1, —sinh(Ay/2)),
k = k7 (coshy; sin ¢, cos ¢, sinh y) . (2.10)

3For notational convenience, we suppress the dependence on the rapidity and azimuth of the emitted
gluon.



eq. (R.9) is defined in the ‘¢-channel’ basis, i.e. the four basis vectors for the process qiq; —
dkq19a ar€

Cy = T015 + T) 0, (2.11)
Cy = TY T d*, (2.12)
Cs = Ty;015 — T)0ki, (2.13)
Cy =TTy if ™. (2.14)

The cross-section for one real gluon emission off the four-quark amplitude M is then given

by*
2 dk dy d
- / r / ydo (M'D},SzD"M) (2.15)
where
N(N? —1) 0 0 0
0 (N2 —1)(N? - 4) 0 0
Sp— 4N 2.16
R 0 0 N(N2-1) 0 (2.16)
0 0 0 IN(N%-1)
One can readily check that the single soft gluon cancellation is assured since®
dy d
/ J qz’DTs D" + TSy + ST = 0. (2.17)
gap 2T

The subsequent evolution of this five parton amplitude is determined by A:

dk/
Mi(Qo) = exp | =22 [ A | M(ir), (215)

where the evolution matrix was computed in 23] to be

B —im)+shin (- )i —&s,Y 0
im T2V —im) —5im 0 0
A= sy 0 MY —im)—im —Lin
4 °Y 4 2N 4
0 0 —im B2V —im) —5kim
N O0OO0O Cr 0 0 O
0ONOO |1 0 Cr 0 O 1
—-p(Y,2 —p(Y, A
1o ono |22l 0 0 cp o |2°0AY)
000N 0 0 0 Cr
N N 1
Y ON 15y ]%Sy
0 - 0 s 1
+1 ~ 4 N PP sA (2.19)
T N 01 N ?
sy (T-%)s -1 -7
4The minus sign arises after the sum over gluon polarisations using 3 €1Ev = —Guv-

5The cancellation occurs already at the level of the integrand.



with

L cosh(Ay/2 4yl +Y) — s, cos(0)
~ 2 % osh (Ay/2+ |y| = Y) — sy cos(o)

sy = sgn(y). (2.21)

~, (2.20)

We now have the machinery to state the all-orders cross-section for one gluon outside

of the gap. For the real emission we have

_ 2a4 /Q dkp /dy dé

out
k! T
20
akp T
Mgexp —7/ o2 rf DLexp —TS/EAT Sr
kTt Qo
2 dk! 2 Qdk’
o o T
exp | — ﬂ-s/ kJTA Dtexp | — 773/ k%r M, (2.22)
Qo kT
and for a virtual emission
_ 2a, /Q dkr /dy d¢
V= T Jo kr s
out
2 Qdk'
Mgexp — as/ ]{:/TI‘Jr Sy
T
Qo
T k!
2a T 2a T
exp | — ﬂ_s/ o T'| vyexp|-— ﬂ_s/ o ' | My + cc. (2.23)
Qo kT

where the matrix « adds the virtual soft gluon which is to lie outside of the gap. It differs
from I in the fact that the rapidity integral is left undone and in that it is purely real since
the imaginary Coulomb terms have already been entirely accounted for by the evolution
matrix I'. We have that

2 2
1 55 (w13 + way) B (—wig — wag + wig + wag)
T35 | —wiz —wss+wia +was B (wia + wa3) — 55 (w13 + waa) (2.24)
+% (W12 + w34 — W14 — o.)gg)
where
1 Cm
wij =2 hy = ~kh—Li P (2.25)

2" (pi - k)(p - )



3. Super-leading logarithms

In the next section we shall present some numerical results obtained by evaluating the
sum of equations (2.23) and (R.29) but first we shall take a closer look at the singularity
structure of each. We expect both to contain divergences in the formal limit that the
out-of-gap gluon becomes collinear with any of the external quarks and we might suppose
that these divergences always cancel. Such cancellations are to be expected as a result of
QCD coherence which informs us that large angle soft gluon emission should not be able
to resolve emissions at small angles. Let us first explore emissions that are collinear with

an outgoing quark.

3.1 Final state collinear emission

We state the result first: emissions collinear to an outgoing quark do cancel between the
real and virtual corrections. To see this it is better to shift to a colour basis in which the
evolution matrix A is block diagonal. The relevant results are summarized in appendix [A].
Let’s consider the particular case in which the emission is collinear with p3 (i.e. y > 0). In
this case, eq. (R.24) simplifies to

N2 -1 10
3.1
ehndy; w3<01>7 (3.1)

where w3 = w3 = wez = wsyy are the collinear divergent eikonal factors. Similarly, D* can

be much simplified by keeping only those terms that will induce the collinear divergence, i.e.

00
N2 -1 00
D* = RE — bt 3.2
2N (R ) 10|’ (3:2)
01

where we have taken hy = hy = hy = h. Using the fact that in the collinear limit we should
take ¢ = 0, y = Ay/2 and hence A\ = p(Y,2y|) = p(Y, Ay), the evolution is described by

0 T

where the upper left block is unimportant for the evolution because of the structure of D*
(see eq. (B.9) for the definition of );). The final ingredient is the matrix Sz which has the
property that its bottom right-hand entries coincide with the matrix Sy, i.e.

N2 N+1 0
2 N+2 5 0
Sk = o &&= (3.4)
0 Sy

Again the upper left block is not important for the argument here. Hence in this collinear
limit, the evolution of the five-parton amplitude collapses into the evolution of the four-
parton amplitude and we are guaranteed a complete cancellation between the real and



virtual emissions, i.e. since (hg — h)? = —ws it follows that
DMI(AT)" ™SRrA™D,, + (T1)" Sy T~ ++H(T)" Sy T™ = 0. (3.5)

3.2 Initial state collinear emission

Now we turn our attention to the case where the out-of-gap gluon is collinear with an
incoming quark. It is perhaps worth recalling that by ‘collinear’ we mean that the rapidity
is tending to infinity and k7 > Q). Arbitrarily, we choose the emission to be collinear with

p1 (ie. y > 0). Now
N2 -1 10
T TUN ”1<0 1)’ (3.6)

where wi = w2 = w13 = wiq are the collinear divergent eikonal factors in this case. The

real emission matrix is not so simple this time:

0 1N+2
: v
N?—1 0 55—
DV — hH — hl" 2 N—-1 3.7
1
0 — N2-1

The evolution matrix A is slightly different too since ¢ = 0, y — oo in this limit and hence
A=pY,2|y]) =0, ie.

AL O
A=| 0ox |, (3.8)
o T

where

NY N-1. N2 -1

A= Y. A
1 2 + IN T+ AN p( ’ y),
NY N+1 N2 -1
= — ] Y, Ay). .
A2 5 SN T T TN p(Y, Ay) (3.9)

Now because of the form of D* the upper left blocks of both A and Sg play a role. Clearly
any cancellation between the real and virtual parts is going to occur only for particular
forms of these blocks. Remarkably, the miscancellation lies wholly in the hands of the im
terms in the evolution matrices, for if we artificially switch these terms off one finds that

1000
im0 % 8 é 8 8 + Nz]\_f Lp(v. Ay)L (3.10)
0001
and 2
im0 g <8 (1)> + N4]\_[ 1P(Ya Ay)1. (3.11)



This diagonal and real structure is sufficient for the cancellation to operate, i.e.

DM(AN"™ ™SR A™D,, + (T1)"""Sy Ty + ~1(TT)" "8y, T™ =0 (3.12)

The 47 terms in the evolution arising from Coulomb gluons generally destroy the can-
cellation between real and virtual emissions in the case that the out-of-gap gluon is collinear
with one of the incoming partons. In more familiar terms, we appear to have discovered
that the ‘plus prescription’ employed in the splitting functions for collinear evolution fails
for emissions with transverse momentum above (Qy. It is particularly interesting that the
miscancellation occurs only once one includes the imaginary parts in the evolution matrices.
As it stands we have a divergence arising from the integral over the rapidity of the

dy do Y
~ Ymax — —- Nl
/ 5 W)~y 5 (3.13)

out-of-gap gluon:

out
In the soft approximation the integral is divergent which is the signal that we need to
go beyond the soft approximation when considering these emissions. Strictly speaking we
ought to work in the collinear (but not soft) approximation which means that the integral
over rapidity ought to be replaced by
Ymax

do do do
d’k dy ——— d’k / dy ——— / dy ———
/ r / Yo dydhe |, / T Yo dydr |, + Y dydPhr

out Ymax

collinear

(3.14)
In this equation 7.y is @ matching point between the regions in which the soft and collinear
approximations are used. If ymax is in the region in which both approximations are valid
the dependence on it should cancel in the sum of the two terms. Now we know that

7 do T dor
dy ——— = d 3.15
/ Y dyd2 k T |collinear / Y < dy d? kT collinear> ( )

Ymax Ymax

dovy
dyd?kr

collinear

where the contribution due to real gluon emission is

/OO d dor
Y dydPr

Ymax

1-6

1 (14 2%\ q(z/z4?)
dz—~ A
2 <1—Z> gz, 2) 0

collinear

2 2 2
dZ%<1—|—z><q(:c/z,,u)_1>AR+ d11—|—zAR

0
1-6 1-6
0

1—2 q(z, u?) 21—
(3.16)
and the contribution due to virtual gluon emission is
yi do N 1 /1422
ym/zx dy dyd;]/?T collinear 0/ 3 ( L=z ) v (317

,10,



In eq. (B.16), q(z, #?) is the parton distribution function for a quark in a hadron at scale
1% and momentum fraction 2. The factors Agr and Ay contain the z independent factors
which describe the soft gluon evolution and the upper limit on the z integral is fixed since
we require y > Ymax®:

S~ % exp (ymax - %) . (3.18)
We have already established that Agx + Ay # 0 due to Coulomb gluon contributions to
the evolution. If it were the case that Ag + Ay = 0 then the virtual emission contribution
would cancel identically with the corresponding term in the real emission contribution
leaving behind a term regularised by the ‘plus prescription’ (since we can safely take § — 0
in the first term of eq. (B.1()). This term could then be absorbed into the evolution of the
incoming quark parton distribution function by choosing the factorisation scale to equal
the jet scale Q.

The miscancellation therefore induces an additional contribution of the form

1-6

1 /14 22 1
/ dz§ < 1—522 ) (AR + Ay) =In (5) (Ar + Avy) + subleading (3.19)
0
A
~ <_ymax + =4 +1In <Q>> (AR + AV) (320)
2 kr

Provided we stay within the soft-collinear region in which both the soft and collinear
approximations are valid, the ym.x dependence will cancel with that coming from the
soft contribution in eq. (B.14) leaving only the logarithm. The leading effect of treating
properly the collinear region is therefore simply to introduce an effective upper limit to
the integration over rapidity in eq. (B.13). More precisely, we can therefore estimate the
leading behaviour simply by setting ymax = Ay/2+1In(Q/kr) in the soft integral, effectively
including the entire soft-collinear region. We are left with

RCTES
kr = 5! ! : 21
m /Qo kr / on W1 5 (Q/Qo) + subleading (3.21)
Y/2

This is the super-leading logarithm: the failure of the ‘plus prescription’ has resulted in
the generation of an extra collinear logarithm. The implications for the gaps-between-
jets cross-section are clear: collinear logarithms can be summed into the parton density
functions only up to scale Qy and the logarithms in QQ/Q¢ from further collinear evolution
must be handled separately. Moreover, since we now have a source of double logarithms, the
calculation of the single logarithmic series necessarily requires knowledge of the two-loop
evolution matrices [Bg).

Indeed we appear to have uncovered a breakdown of QCD coherence: radiation at large
angles does appear to be sensitive to radiation at low angles. However this striking con-

clusion was arrived at under the assumption that it is correct to order successive emissions

5The approximation arises since we assume for simplicity that Ay is large and § is small. This approxi-
mation does not affect the leading behaviour and can easily be made exact if necessary.

— 11 —



in transverse momentum. Coherence indicates that one does not need to take too much
care over the ordering variable, e.g. k7, E and k% /E are all equally good ordering variables
but the super-leading logarithms arise counter to the expectations of coherence and in
particular as a result of radiation which is both soft and collinear. It is therefore required
to prove the validity of kr ordering before we can claim without doubt the emergence of
super-leading logarithms or confirm their size.

We note that the super-leading logarithm makes its appearance at the lowest possible
order in the perturbative expansion, i.e. at order a? relative to the Born cross-section.
More explicitly, the O(as) and O(a?) corrections to the Born cross-section simply never
involve more than one ¢7w term and hence any ¢7 terms must cancel since the cross-section
is real. The first candidate order at which two factors of i can appear is therefore O(a?).
However, the addition of the gluon with the lowest k7 can never generate a net factor of
im since any such factors must cancel between the two diagrams where the lowest k7 gluon
lies either side of the cut. Hence we anticipate that the first super-leading logarithm makes

4
o~ g (2%) In® <Q> Y. (3.22)

a contribution

Qo

Note that for each factor of m we pay a price in colour (the leading contribution in colour
goes like (asN)™). The factor of Y is from the rapidity volume of the in-gap gluon. To be
a little more explicit, we now expand in as.

The lowest order contribution for a single emission outside of the gap (with y > 0) is

205\ % 1 d
O1,L0 = 00 ( - ) gln2 <%> 2Y /dy £ Wou
out

d
— / dy %p(Y, 21y|) [(N2 — 2) (wos + wi4) — w1z + 2(w12 + w3g) — w24]
out
d¢ 2
+ [ dy 5-A [(N? —2) wa3 —wiz + 2ws4] ¢ (3.23)
out

The dominant contributions at large enough Y come from emissions close to the edge of
the gap. To see this we note that at large Y the integral over wyy vanishes as exp(—2Y’) and
so the only significant contribution arises from the terms proportional to p and A which
are dominated by the region around y = Y/2.

The lowest order contribution that contains a super-leading logarithm is

205\ * Q (3N2 — 4)
= — ) m® (= 2y Y .24
01,SLL 00 < - > n <Q0> T 150 (3.24)

Subsequent terms alternate in sign and are ~ a?L" 172 N2Y (NY)"~* for large N and Y.

Since we have only considered one emission out of the gap region, we should convince
ourselves that there is no possibility that the new collinear logarithm cancels with a similar
contribution from two (or more) emissions outside of the gap. We here present an argument
which confirms that the lowest order (in «y) super-leading logarithm has nothing to cancel

- 12 —



against. As we have seen, this contribution occurs at order a? relative to the Born cross-
section. We know that the gluon with the smallest k7 does not give any i¢m term and we
know that there is an exact cancellation if this gluon is outside of the gap. We also know
that there is an exact cancellation if all i terms are zero. Since the cross-section is real,
we must have an even number of iw terms, which can in this lowest order case only be two.
Pulling all this together, we therefore have four gluons of which the lowest k7 gluon must
lie inside the gap and two are Coulomb gluons. Therefore we can only have, at most, one
gluon outside of the gap.

Thus, we have shown that at order a? all contributions are of the type ‘zero gluons
outside the gap’ or ‘one gluon outside the gap’ and we have explicitly computed these and
know that there is no cancellation.

As we have already shown, the miscancellation is specifically related to the exchange of
Coulomb gluons, since with the resulting 7 terms set to zero cancellation is restored. It is
worth recalling the special role of Coulomb gluons in the proofs of factorization by Collins,
Soper and Sterman [, B, B§. They consider the exchange of potentially factorization-
breaking soft gluons and show that the eikonal gluons cancel in the sum over cuts through a
given diagram, while some Coulomb gluon terms remain uncancelled. Only after summing
over all diagrams in which a Coulomb gluon is exchanged, in particular including diagrams
in which it is attached to the hadron remnants, can the corresponding contribution be
shown to cancel. In our case, since we consider a high-p; process (the exchanged gluons
we are interested in populate the strongly-ordered region kp > )y where we assume
Qo > Aqcp), emission from the hadron remnants is irrelevant (power-suppressed) and
hence we have no a priori reason to assume that the Coulomb phase terms will cancel. It
must be checked explicitly and in our case they do not.

4. Numerical results

In the following figures”, we have computed the out-of-gap cross-section obtained by sum-
ming eq. (B:2) and eq. (R:23) each evaluated in the super-leading (soft and collinear)
approximation. This amounts to setting all the w;; = 0 except w12 = w1z = wis = 1
(in the case y > 0) and p(Y,2]y]) = A = 0. In addition, the integral over rapidity is
performed over an interval of size In(Q/kr) and we multiply by a factor of 2 to account
for the possibility that the out-of-gap gluon can be either side of the gap. We refer to
the cross-section thus computed as ‘SLL’ in all of the plots since it contains the complete
super-leading contribution. For comparison, we also compute the sum of eq. (2.29) and
eq. (R.23) without making the collinear approximation. In this case the integral over y is
over the region Y/2 < |y| < Ay/2+In(Q/kr) and we take R = 1. These cross-sections are
labelled ‘all’ in the plots and they necessarily include a partial summation of the single log-
arithmic terms as well as the super-leading terms. Throughout we keep the strong coupling
fixed at g = 0.15 and our cross-sections are usually normalized to the fully resummed
cross-section corresponding to zero gluons outside of the gap region, i.e. as determined by

eq. (R.1).

"We generically write the in-gap cross-section as oo and the out-of-gap cross-section o;.
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Figure 2: L dependence of the out-of-gap cross-section (normalized to the in-gap cross-section) at
two different values of Y.

The plots in figure | show the cross-section dependence upon L = In(Q?/Q3) at two
different values of Y whilst the dependence upon Y at two different values of L is illustrated
in figure . It seems that while the out-of-gap cross-section is not dominant anywhere it is
also not negligible. This is of course already known: the non-global logarithms are generally
significant. We can also see from these plots that the super-leading series is generally
small relative to the ‘all’ result for L < 4, which indicates that the single logarithms are
phenomenologically much more important than the formally super-leading logs at these
values of L. Of course one should remember that our calculations are for the emission of
one gluon outside the gap region and the full super-leading series requires the computation

of any number of such gluons.

From a more theoretical perspective it is interesting to take a look at the cross-sections
out to larger values of L and Y. In figure | we show the cross-section out to large values of
L. It is immediately striking that the cross-section asymptotes to a constant value, which
implies that the out-of-gap cross-section is directly proportional to the in-gap cross-section
at large L with a Y dependent prefactor. In figure f] we show how the large L behaviour
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Figure 3: Y dependence of the out-of-gap cross-section (normalized to the in-gap cross-section) at
two different values of L.

of the cross-section varies with Y.

Figure |f shows the dependence of the cross-section out to large Y. Note that this
time we have normalized the cross-section by the square of the in-gap cross-section (and
have set the Born cross-section equal to unity). The cross-section again saturates at large
enough Y. Figure [] shows how the large Y behaviour varies with L. We consider the fact
that o1 ~ —o3 at large Y to reflect the deeper link which is known to exist between QCD
dynamics in non-global observables and small-z physics where such non-linear effects lie
behind the phenomenon of parton saturation [B0]-[B3].

5. Conclusions

Conventional calculations of non-global observables assume that emission well away from
the region in which the observable is calculated cancels. When starting this work, we aimed
to check this assumption for one of the simplest non-global observables in hadron—hadron
collisions, the gaps-between-jets cross-section, by explicitly calculating the all-orders contri-
bution from configurations with one gluon outside the gap region. Based on the pioneering
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Figure 4: L dependence of the out-of-gap cross-section (normalized to the in-gap cross-section) at
two different values of Y and plotted out to very large L.
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Figure 5: The Y dependence of the large L behaviour of the out-of-gap cross-section normalized
to the in-gap cross-section at two different values of a.

work of Dasgupta and Salam, we expected to find additional contributions from emission
just outside the gap. Physically, the probability that such radiation is not accompanied by
additional nearby radiation reduces the gap cross-section, giving rise to additional towers
of leading logarithms; the so-called non-global logs. We indeed found such a contribution,
illustrated in eq. (B-29).

However, when calculating the evolution of five-parton configurations produced by real
radiation outside the gap, we found a mismatch between it and the evolution of the four-
parton configurations corresponding to virtual emission. This can be traced to the Coulomb
phase terms (the imaginary parts of the loop integrals) coming from singularities that pinch
the contour integral at the point ky = k_ = 0. As illustrated in eq. (B.12), if these terms are
artificially set to zero, the mismatch vanishes. However, keeping these terms, a mismatch
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cross-section at three different values of L and plotted out to very large Y.
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Figure 7: The L dependence of the large Y behaviour of the out-of-gap cross-section normalized
to the square of the in-gap cross-section

remains, even for emission arbitrarily far away from the gap region. Integrating over phase
space results in a new superleading logarithm, formally more important than any so-called
leading logarithm previously included, as illustrated in Eq. (B.24). Our conclusions are
subject to the caveat that we have assumed the validity of transverse momentum ordering
for successive soft gluon emissions.

Although from our numerical results it may appear that the phenomenological impact
of this formally-dominant effect is modest for L and Y values of interest, we should recall
that we have only calculated the contribution from one gluon outside the gap. Having
identified such a contribution, it is clearly necessary to examine how contributions from
arbitrary numbers of gluons outside the gap will contribute. In fact we see no reason why
the argument at the end of section ] should not hold for the leading such contribution
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and expect that at the nth order of perturbation theory the leading contribution will come
from n — 3 gluons outside the gap, resulting in a term ~ a?L?"372Y. Calculating such
contributions analytically seems a formidable challenge without a deeper understanding of
the colour evolution of multi-parton systems.

We close this paper with a remark about the more theoretical interest of our result.
One can view the gaps-between-jets process as a look at the pomeron loop in QCD, since
one sums over radiation outside the gap (corresponding to a cut pomeron) and forbids it
inside the gap (corresponding to one pomeron either side of the cut). In [[l§] we calculated
the conventional gap-between-jets cross-section in the high energy limit and showed that
it is equivalent to the BFKL result in the region in which both are valid. In this paper, we
noted that in the high-energy (large Y') limit the cross section for one emission outside the
gap is proportional to the square of the conventional gap cross-section, offering a tantalizing
clue to the structure of higher orders. A deeper understanding of this connection would
almost certainly open new avenues to understanding non-global observables.

Acknowledgements

We thank Mrinal Dasgupta and Gavin Salam for many interesting discussions. This work
was supported by a grant from the UK’s Particle Physics and Astronomy Research Council.

A. The block diagonal basis

Here we present the action of shifting from the t-channel colour basis to the block diagonal
basis. We first exploit the fact that we can add any imaginary multiple of the unit matrix

to the evolution matrices without affecting any observables in order to introduce

N
A=A+ —pinl. (A.1)

The required block diagonalization of A’ is effected by

1
]%Sy N23y Sy 2N Sy
R = N | vty nasy 0 sy (A.2)
S\ 2(N2—1) -1 L L '
2 2 IN
1 1 0 -1

The real emission matrix then transforms to

D" — R™'D* =
%_(hﬂ ) %N-ﬁ-;(hﬂ hﬂ+ h# Thﬁ)
L+ sy NZ -1 ﬁ(hu ) 2N 1(hu h;1L+NhZ Nhg)
2 2N hE — hy W(hg — 1)
N2 1(h“ hy) N2 1(h“ h§+N2(h§—hg)+2(h§—hZ))



%—i;(hé‘—h’f) %%iQ(h“ h’5+$h’f—$h§)
CLlosy JNZ-1 | R - hy) sn=r (W — b + g hE — ghY)
2 2N hy — hy s (M — hY)
woop (b — ) =g (B — By + N2 (R = BY) + 2(R{ — 1)
(A.3)
and the evolution matrix becomes
A1 0 0 0
0 Ao 0 0
A—-R AR = 2 2 1.
0 XY, Ay) —— 1277
00 i —dim+ Ny 4 ML (v, Ay)
NOO0OO
O NOO |1
Y, 2
o o N o |22l
000N
10 0 O
0-1 0 0 A
— A4
+ 00 —N 0 4 (A-4)
00 0 —-N
where the \; are specified in eq. (B.9).
Finally, the colour matrix transforms to
N2 N+1
2 N:t2 20 0 0
Sr— RISz R S = 0 (A.5)
RERERRET 0 NZ 0 '
0 0 0 X(N2-1)
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